CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Bayardo Materón - Gabriel Fernandez
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

• CONCRETE FACE ROCKFILL DAMS –CFRDs- HAVE INCREASED IN HEIGHT TO NEAR 300M.

• RECENT SEISMIC EVENTS (2008) SUCH AS WENCHUAN – CHINA AND IWATE – MIYAGI – JAPAN INDICATED THE NECESSITY TO OPTIMIZE DESIGN AND CONSTRUCTION MEASURES TO MITIGATE SHAKING EFFECTS.

• THIS PAPER PRESENTS A METHOD FOR PREDICTION OF SEISMIC DISPLACEMENTS BASED ON SIMPLIFIED METHODS BY NEWMARK, AMBRASEYS AND SARMA.
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

ZIPINGPU DAM WAS AFFECTED BY WENCHUAN EVENT - 2008
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

ZIPINGPU - Horizontal Joint Damaged at El.845
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Perimetric Joint between Slab and Parapet Was Damaged
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Some Cracks at the Crest Were Presented
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Rockfill Loosened at Upper Downstream Slope
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Ishibuchi Dam Was Affected by the IWATE – MIYAGI Event - 2008
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Construction of Ishibuchi Dam by Dumping Rockfill from a Bridge Supported by Pillars
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Longitudinal Crack on the Crest
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Longitudinal Crack on the Crest
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Ground Motions Amplification

\[A_{\text{max}} = \text{Maximum Ground Acceleration} \]
\[A_1 = k_{n1} A_{\text{max}} \]
\[A_2 = k_{n2} A_{\text{max}} \]
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

PEAK ACCELERATIONS AT THE CREST WERE AMPLIFIED:

ZIPINGPU - Perpendicular to Axis 2.06 g
MGA = 0.7 g

ISHIBUCHI – Perpendicular to Axis 0.95 g
MGA = ?

Ground Motions Amplification
The fundamental period of the dam, T_o, can be approximated as:

$$T_o = 2.61 \frac{h}{V_s}$$

Where h is the height of the dam and V_s is the shear wave propagation velocity at strain levels compatible with those induced by the ground shaking on the embankment materials. The V_s value can be extrapolated from shear wave velocity measurements in the embankment materials. In our experience, well compacted, dense rockfill materials with unit weights $\gamma \approx 2.2 \text{ T/m}^3$ have V_s values in the range of 1500 ft/sec (457 m/sec) to 2000 ft/sec (610 m/sec).
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Maximum Simultaneous Seismic Coefficient for 20% Damping
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Damping Correction Factor
Potential Sliding Wedge Geometry
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

STATIC CONDITIONS

The wedge ABC, resting on a slip surface with an inclination α_1 can be established as:

$$FS = \frac{N \tan \varphi}{W \sin \alpha_1}$$

Where $N = W \cos \alpha_1$; replacing terms:

$$FS = \frac{\tan \varphi}{\tan \alpha_1}$$
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

Force Polygon of Sliding Wedge
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)
DYNAMIC CONDITIONS
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

CONCLUSIONS:

• INCREASE WIDTH OF CREST.
• IMPROVE ZONING INCREASING 3B AT CREST.
• USE FLATTER SLOPES NEAR CREST.
• USE HEAVIER COMPACTORS > 5T/M OVER THE CYLINDER.
• USE HIGHER FREE BOARD.
• RESTRICT PARAPET WALL TO 4 M.
• INCREASE W.S. CAPACITY.
• SPLIT SLAB WIDTH LANES TO 7,50 M.
• REINFORCE HORIZONTAL CONSTRUCTION JOINTS.
• USE COMPRESSIBLE FILLERS IN CENTRAL COMPRESSION JOINTS.
CONSIDERATIONS ON THE SEISMIC DESIGN OF HIGH CONCRETE FACE ROCKFILL DAMS (CFRDs)

1A COHESIONLESS SOIL - COMPACTED BY CONSTRUCTION EQUIPMENT
1B RANDOM - COMPACTED BY CONSTRUCTION EQUIPMENT
2A PROCESSED MATERIAL (Ø MAX. = 3/4”) - MANUAL COMPACTION
2B PROCESSED MATERIAL (Ø MAX. = 3”-4”) 4-6 PASSES OF 12 Ton VIBRATORY ROLLER
3A SELECTED SMALL ROCK PLACED IN SAME LAYER THICKNESS AS ZONE 2
3B QUARRY RUN ROCKFILL, ABOUT 0,60m TO 0,80m LAYERS, 4-6 PASSES OF 12 Ton VIBRATORY ROLLER
3C QUARRY RUN ROCKFILL, ABOUT 0,80m TO 1,00m LAYERS, 4-6 PASSES OF 12 Ton VIBRATORY ROLLER
4 DOWNSTREAM ROCKFILL - PLACED ROCKFILL
THANKS